Publications

Publications by year in reversed chronological order. Equal contribution indicated by *. Generated by jekyll-scholar.

2023

  1. Pathologies of predictive diversity in deep ensembles
    Taiga Abe, E Kelly Buchanan, Geoff Pleiss, and John P Cunningham
    arXiv preprint arXiv:2302.00704, 2023

2022

  1. Deep ensembles work, but are they necessary?
    Taiga Abe*, E Kelly Buchanan*, Geoff Pleiss, Richard Zemel, and John P Cunningham
    In Advances in Neural Information Processing Systems, 2022
  2. Neuroscience Cloud Analysis As a Service: An open-source platform for scalable, peproducible data analysis
    Taiga Abe, Ian Kinsella, Shreya Saxena, E Kelly Buchanan, Joao Couto, John Briggs, Sian Lee Kitt, Ryan Glassman, John Zhou, Liam Paninski, and  others
    Neuron, 2022
  3. The best deep ensembles sacrifice predictive diversity
    Taiga Abe*, E Kelly Buchanan*, Geoff Pleiss, and John Patrick Cunningham
    In I Can’t Believe It’s Not Better Workshop: Understanding Deep Learning Through Empirical Falsification, 2022

2020

  1. Inverse articulated-body dynamics from video via variational sequential Monte Carlo
    Dan Biderman, Christian A Naesseth, Luhuan Wu, Taiga Abe, Alice C Mosberger, Leslie J Sibener, Rui Costa, James Murray, and John P Cunningham
    In First Workshop on Differentiable Computer Vision, Graphics and Physics Applied to Machine Learning, 2020

2018

  1. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
    Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge
    Nature Neuroscience, 2018